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DISCLAIMER

The statements and conclusions in this report are those of the
Contractor and not necessarily those of the State Air Resources Board.
The mention of commercial products, their source, or their use in
connection with material reported herein is not to be construed as

either an actual or implied endorsement of such products.
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1. Introduction

Air pollution is an environmental problem that is both pervasive
and difficult to control. An important element of any rational comtrol
approach is a reliable means for evaluating the air quality impact of
alternative abatement measures. A major focus of the research
described in this report has been to develop a capability to describe
the production and transport of photochemical oxidants within an urban
airshed. This work has been successfully completed and is reported in
more detail in McRae (1981), McRae et al. (1982abc), and McRae and

Seinfeld (1982).

2. Model Formulation

The combined influences of advection, turbulent diffusion,
chemical reaction, emissions and surface removal processes have been
incorporated into a series of mathematical models based on the species
continuity equation. A schematic representation of the interaction of
these elements is shown in Figure 1. Sinoe each model employs common
components the simpler forms can be used for rapid screening
calculations and the more complex ones for detailed evaluations. This
feature is particularly useful to regulatory agencies that must
evaluate many different control strategies, Because of the importance
of understanding the practical limitations of these models a delineation

of the essential assumptions underlying their formulations has been
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carried out. The results of this investigation are reported in Goodin

et al. (1979a) and McRae et al. (1982a).

The flow fields, needed for species transport, are consfructed
using inverse distance weighted polynomial interpolation techniques
that map routine monitoring data onto a regular computational mesh
(Goodin et al., 1979b; 1981). Variational analysis procedures are then
employed to adjust the field so that mass is conserved. These
techniques are described in Goodin et al. (1979¢) and Goodin and McRae
(1980). Initial concentration and mixing height distributions can be

established with the same interpolation algorithms.

Subgrid scale turbulent transport is characterized by a gradient
diffusion hypothesis. Similarity solutions are used to model the
surface layer fluxes. Above this layer different treatments of
turbulent diffusivity are required to account for variations in
atmospheric stability. Convective velocity scaling is utilized to
develop eddy diffusivities for unstable conditidns (McRae et al.,
1982a). The predicted mixing times are in accord with results obtained
during sulfur hexafluoride (SF6) tracer experiments (McRae et al., «
1981). Conventional models are employed for neutral and stable

conditions.

A new formulation for gaseous deposition fluxes is presented that
provides a means for estimating removal rates as a function of
atmospheric stability. The model, described by McRae et al. (1982a),

satisfactorily reproduces measured deposition velocities for reactive




materials. In additiom it is shown how computational cell size

influences the representation of surface removal.

Chemical interactions between twenty nine chemical species are
described by a 52 step kinetic mechanism (Falls and Seinfeld, 1978;
McRae et al., 1982a)., The atmospheric hydrocarbon chemistry is modeled
by the reactions of six lumped classes: alkanes, ethylene, other
olefins, aromatics, formaldehyde and other aldehydes; a grouping that
enables representation of a wide range of smog chamber experiments and
atmospheric conditions. Chemical lumping minimizes the number of
species while maintaining a high degree of defail for the inorganic
reactions. The influence of variatiomns in rate data, stoichiometric
coefficients and initial conditions on oxidant production have been
studied using the Fourier Amplitude Semsitivity Test (Koda et al.,
1979; Falls et al., 1979; McRae et al., 1982d; Tilden et al., 1980 and

McRae and Tildem, 1980).

The wide variation in time scales, non—linearity of the chemistry
and differences in tramsport processes complicates selection of
numerical algorithms. Operator splitting techmiques are used to
decompose the governing equation into elemental steps of transport and
chemistry. Each transport operator is further split into advective and
diffusive components so that linear finite element and compact finite
difference schemes can be applied to their best advantage. Because
most of the computer time is consumed by the chemical kinetics those
species that could be accurately described by pseudo-steady state

approximations were identified reducing the number of species,



described by differential equations, to 15. A complete discussion of

the numerical techniques can be found in McRae et al. (1982b).
3. Data Base for Model Performance Evaluation

During the week of 23-28 June 1974, a severe air pollution episode
was experienced in the South Coast Air Basin of California (Figure 2).
Hourly averaged ozone (03) concentrations reached 0.50 ppm in the
Upland-Fontana area, and values above 0.35 Ppn were reported at 10
other stations. These high ozone levels provide a stringent test of
the ability of the model to simulafe episodes. Another important
reason for choosing the 1974 period was that detailed emissions
inventories, commissioned by the State of California Air Resources

Board, were available for that year.

The basic meteorological input data needed for the model were
primarily derived from the South Coast Air Quality Management District
(SCAQMD) monitoring stations. During the period‘23—28 June, 1974 wind
speeds were considerably lower than normal. (Radiosonde data from Pt.
Mugu indicated that the wind speeds averaged about 1.6 m st between

the surface and the 750 mb height; the normal June average is about 4.2

ms 1)

The mixing height distributions were developed by interpolating
acoustic sounder and radiosonde measurements. At El1 Monte, the maximum
depth of the mixed layer was approximately 750 m on each of the days
26-27 June. This value is unseasonably low. Temperatures between the

300 and 900 m levels reached 30°C during 27 and 18 June, while the
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surface temperatures dropped as low as 15°% during the night. The
intense nocturnal inversion was caused partly by subsidence and partly
by radiation from the surface since the dry air aloft kept the sky

cloudless,

In summary, the low wind speeds, high temperatures and low
inversion base produced conditions conducive to the accumulation of
precursor emissions and, in turn, to the production of high ozone

levels.

One of the most important inputs to any airshed model is‘a
comprehensive detailed and accurate emission inventory, that has been
constructed at a level of detail conmsistent with the required spatial,
temporal and chemical resolution of the model. In this study emissions
from 130 different source categories were spatially distributed over
the region shown in Figure 2. A summary of the daily totals and the
distribution between different source classes is shown in Table 1 and
Figure 3. Diurnal variations in emission rates were resolved to within
one hour in order that the model predictions would be compatible with
the averaging time used in making ambient air quality measurements.
Table 2 gives the estimated 1974 composition of reactive hydrocarbon
emissions in the SCAB grouped according to the six~class chemical
lumping scheme. These results were derived from detailed composition
profiles developed for each source category. For further details of

the emission inventory the reader is referred to McRae et al. (1982c).

AT =
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TABLE 1

Summary of Estimated 1974 Daily South Coast Air Basin Emissions

SOURCE CLASS
TOTAL EMISSIONS CONTRIBUTION (%)

SPECIES (kg/day) MOBILE STATIONARY
Carbon monoxide (CQ) 8,610,000 98.8 1.2
Nitrogen oxides (NOX) . 1,320,000 62.3 37.7
Sulfur oxides (SO.) 427,000 13.7 86.3
Total Hydrocarbons (THC) 3,379,000 30.0 70.0

Reactive Hydrocarbons (RHC) 1,290,000 71.0 29.0
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TABLE 2

Composition of Reactive Hydrocarbons in Inventory Region

EMISSIONS COMPOSITION(%) MOLE WEIGHTED AVERAGE

SPECIES kg sT5  WEIGHT = MOLE  OCULAR o
Formaldehyde (HCHO) 0.18 1.25 2.88 30.0 1.00
Other Aldehydes (RCHO) 0.25 1.74 2.22 63.1 3.36
Ethylene (C2H4) 0.82 5.73 13.4 ‘ 28.0 2.00
Other Olefins (OLE) | 1.98 13.8 S 14.2 67.4 4.83
Aromatics (ARQ) 2.03 14.2 9.4 100.2 7.586
Alkanes (ALK) 9.04 63.3 57.9 83.5 5.82

TOTALS 14.30 100.0 100.0
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The initial concentration field was established using the
procedures described in Goodin et al. (1980). Hourly averaged data
from the monitoring sites, shown in Figure 4, were interpolated to the
computational grid. Because of the poor quality of most reactive
hydrocarbon measurements, a set of splitting factors was developed for
converting total hydrocarbon readings into the componients needed for
the chemical mechanism. These factors were derived from emissions data

and from the results of detailed field measurements.

A summary of the aerometric and emissions data compiled for use in

this study is presented in Table 3.
4. Model Performance Evaluation

While the mathematical formulation of the complete system contains
no regional or area specific information, performance evaluation
studies were carried out using data measured in the South Coast Air
Basin of Southern California (McRae, 1981; McRae et él., 1982¢ and

McRae and Seinfeld, 1982).

The model was applied to simulate the two~day period 26-27 June
1974 in the SCAB. The concentrations of 15 species were predicted in
each computational grid cell as a function of time commencing at 0:00
hours 26 June. Of the 15 species calculated, the two that‘provide the
most stringent test of a model are NO2 and 03. Figures 5-9 show
predicted and observed concentrations of NO2 and 03 during 26-27 June

1974 at several monitoring stations in the SCAB.
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Predicted and Observed Concentrations of:
(a) Ozone and (b) Nitrogen Dioxide at Downtown Los Angeles
(- predicted, o observed)




CONCENTRATION (PPHM)

CONCENTRATION (PPHM)

16

40 =
PASADENA-WALNUT ST
30+
™
20}
10+
Q o221 L P —— : ° T! 9" L 2 ?1 R ISP RO BN PUPEPL
©:00 4:00 8:00 12:00 16:00 20:00 24:00 4:00 8:00 12:00 16:00 20:00 24:00
26 JUNE 27 JUNE
| TIME (PST)
(a)
40
NO2
PASROENA-WALNUT ST
30- —
(o} SEVPIIPEN DA PURPIES R USSP B ST | N 1 P N BT
0:00 4:00 8:00 12:00 16:00 20:00 24:00 4:00 $:00 12:00 16:00 20:00 24:00
26 JUNE _ 27 JUNE
TIME (PST)
(b)
FIGURﬁ 6

Predicted and Observed Concentrations of:
(a) Ozone and (b) Nitrogen Dioxide at Pasadena
(-~ predicted, o observed)




CONCENTRATION (PPHM)

CONCENTRATION (PPHM)

17

40 03 .

POMONR °

30+ . -

20+ -

10+ -

Orecee oo, . . ... ... ooceeee’? S ., . ... . Ny
0:00 4:00 8:00 12:00 16:00 20:00 24:00 4:00 8:00 12:00 16:00 20:00

26 JUNE 27 JUNE
TIME (PST) »
(a)
40
NO2
POMONA
30+ -
20+ -
[ ] [}

10, -
Ol 0 o a0 N M
0:00 4:00 8:00 12:00 16:00 20:00 24:00 4:00 8:00 12:00 16:00 20:00 23:00

26 JUNE 27 JUNE
TIME (PST)
(b)
FIGURE 7

Predicted and Observed Concentrations of:
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(- predicted, o observed)
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In the early morming both NO and reactive hydrocarbons peak due to
traffic emissions. The No, peak concentrations are delayed a few
hours, consistent with the time required to oxidize NO. Observed and
predicted ozone concentrations increase with distance toward the east.
Ozone concentrations gradually increase until the time of the peak
predicted concentration, which usually occurs between 1300 and 1400

PST.

In most cases the model accurately reproduced both the magnitude
and timing of the peak ozone concentration. Similar behavior was also
noted for nitrogen dioxide except that the model tended to predict the
peak values ome to two hours earlier. The fact that the model
satisfactorily described the observed concentration trends om the
second day is particularly encouraging for control strategy
calculations. The reason for this is that by running the model for a
period longer than the characteristic ventilationm time of the airshed
it is possible to minimize the influence of uncertainties in specifying .
the initial conditions. This capability is important for those
situations where it is not possible to derive starting conditions from

ambient monitoring data.

In many respects a statistical analysis of the deviations between
predictions and observations is the heart of model performance
evaluation. Although raw statistical comparison of observed and
predicted values may not reveal the cause of discrepancies, it can tell
much about the nature of the mismatch. Figure 10 shows the frequency

distribution of the residuals, i.e. predicted concentrations minus
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observed for NO2 and 03 for all monitoring stations over the two day
simulation. Table 4 presents a summary of the statistics used to

evaluate the model performance.

An important criteriom im evaluating an air pollution model is its
ability to predict the observed comcentration maxima. Table 5 shows a
comparison of the magnitudes of the predicted and observed 03 maxima
for 27 Junme at those stations where the observed maxima exceeded 0.20
ppm and a comparison of the predicted and observed hour of the 03
maximum at the same stations. The predicted times of occurrence of the
03 maxima agree exactly or are at most one hour removed from those
observed. Because the phasing of predicted 03 concentrations depends
on virtually all the physical and chemical processes involved, the
close agreemeﬁt between observed and predicted temporal behavior

suggests that these processes are accurately portrayed relative to

their temporal dynamics.

In summary, because the essential trends of the predictions and
observations are in agreement and because the model components
represent state-of-the—art knowledge of each aspect, we assume that the
basic model framework is a valid representation of atmospheric

concentration dynamics.

5. Publications Derived From Research Project

. In this executive summary only a brief outlime of the

photochemical modeling project can be presented. Further details of



23

TABLE 4

Summary Statistics Determined Over All Times

and Locations for 26-27 June 1974(a)

b
PERFORMANCE DEFINITION( ) INTERPRETATION OF RESULTS OF TEST EVALUATION OF MODEL
MEASURE STATISTICAL TEST OZONE NITROGEN DIOXIDE PERFORMANCE
0y (N0,)
n o
Mean of Residuals 1 2: 2: A measure of the average blas in  0.0019 ppm 0.0078 PP® While the model exhibits a slight
[ Gl =1 6=l wl(x ,tk) the predictions can be inferred () () tendency towards underprediction,
from this test. The criterion 1321 [11%] the bias 1s of the order of typical
indicates whether the model pre- monitoring instrument errors.
dominantly over-or-under-predicts
the observed concentration.
Root Mean Square Error 1 n m 2 This test measures the average 0.0382 ppm 0.0348 ppm These results provide a formal
(RMSE) Centered about % "N 2: 2: [wi(x.,:k)—ui] spread of the residuals and, measure of the spread of the
the Mean j=1 k=1 J more importantly, it is insensitive residual histograms presented
to any bias in the predictioms. in Figure 10.
Correlation Coefficient 1 & m The correlation coefficient 0.89 0.67 Tor ozone (0,) the predicted
¥l z: z:vi(x.,tk)ni(x_,tk) measures the degree to which the perfornance is excellent. 1In
j=1 k=1 J J magnitude of the predictions in- the case of nitrogen dioxide (NOZ)
crease linearly with the magnitude it is not possible to ascertain
n m n nm of the observations. From a whether the low value of r is due
1 2 2 y .
3 ( 2: 2: vi ) ( Z: E: 0y ) practical point of view it is to the model performance or inter-
(am)®  j=1 k=1 j=1 k=1 important to note that the coefficient ference from HONO, and PAN in the
is insensitive to the extent of the measurement of MO, (Adema, 1979;
where increase. For example, if the pre- Higuchl et al., 1§76).
_.p _ =P dictionsincrease limearly at 1/10th
Vi(xj’tk) ci(xj’tk) 4 of the rate of the observations then r
N _ .o -0 will still be one.
ni(xj bty = ci(xj ) - ey
and
- 1 n m
c, = — e, (x.,t
i om jgl kgl 1( i’ k)
Linear Least Squares o This performance measure can slopes Both the slopes and incercepts
Curve Fit .cg = Bici + ¢i be used to assess the average 0.851 0.709 for ozone (0,) and nitrogen
increase in the predictions as intercepts dioxide (NOZ indicate that the
where the slope &, is given by the observations are increased. 0.0115 ppm 0.0262 ppm model satisfactorily reproduces
AR a The slope parameter of the the cbserved concentration
- 2: Z: vo(x,,t i, (x_,t,) linear least squares curve fit is distributions.
0. o j=1 k=1 R this measure. If the slope is
t 1 & & nearly equal to one then the
- t t i indicari f th
- ; kglvi (xj’tk) :’.ril ercept is an indication o e
J=a as.
and intercept ¢i by
=0 - P
oy ey T By e
Accuracy of Peak Ratio of the maximum predicted 0.41 _ 0.31 _ For both ozone (0,) and
P = 0.80 ~==—=0.80
Prediction max ci(x.,tk) peak concentration to the highest 0.51 0.36 nitrogen Jioxide NOZ) the
4 measured value. predicted highest concentra-
max co(x ) tions are within 20% of the
itk observations.
Timing of Peak ° Difference in timing of predicted O hrs(d) -2 hrs(d) As seen in Table 9 the pre-
Concentration Aci =t (x,) - cp(x.) and observed peaks at the monitor- dicted and observed ozone (0,)
Predictions J J ing site with the highest observed concentration peaks were coifci-
concentration. dent at most monitoring sites.
Differences of up to three
hours were noted in the predict—
ed times of the NO2 peaks.
Error Bands % of residuals over all j,k This measure gives the percentage 83.8%(e) 88.9%(6) Most of the residuals were

that satisfy |wi(xj,tk)|i bound

of predictions that fall within
a particular concentration bound.

within the + 0.05 ppm
concentration band.

Footnotes:

(a)

In the statistical evaluation of model performance 1336

of ozone (03) and 973 for nitrogen dioxide (NOZ)'

pairs of predictions aund observations were used in the analysis

(b) The residual for species i at locations j=1,2,..Im and times k=1,2,...,m are defined as wi(x.,tk) = ci(x.,tk) - c?(x.,tk)
where ¢y and c; are respectively the observed and predicted concentrations of species 1. 4 J J

(c) The values in brackets express the residuals as a percentage of the observed mean concentration. For ozone (0,) the observed
and predicted means were 0.0661 and 0.0641 ppm and for nitrogen dioxide (NOZ) 0.0709 and 0.0630 ppm respectively.

(d) The peak observed value of ozone (0,) = 0.51 ppm occurred at Upland at 14:00 PST and the highest nitrogen dioxide
(NOZ) = 0.36 ppm at downtown Los Abgeles at 10:00 PST.

(e) Ccncentration bound set to + 0.05 ppm .
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TABLE 5

Observed and Predicted Maximum 1-hr Ozone Concentrations at
SCAB Statioms Where [03] > 0.20 ppm and Timing of Ozone
Maxima, 27 June 1974

[03], ppm Time of maximum
Station Observed Predicted Observed Predicted
Anaheim 0.23 0.21 1600 1600
La Habra 0.31 0.27 1500 1500
Los Alamitos 0.24 0.22 1700 1600
Norco-Prado Park 0.24 0.21 1600 1600
Riverside~Rubidoux 0.30 0.24 1500 1500
Riverside-Magnolia Avenue 0.24 0.24 1500 1500
San Bernardino 0.32 0.23 1500 1500
Chino 0.27 0.25 1400 1400
Upland-Civic Center 0.51 0.41 1600 1500
Upland-ARB 0.46 0.41 1500 1500
Fontana 0.49 0.38 1300 1400
Azusa 0.35 0.29 1200 1200
Burbank 0.30 0.30 1400 1300
Pomona 0.35 0.32 1100 1200
Whittier 0.38 0.30 1300 1200
Pasadena 0.31 0.31 1200 1200
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the development and testing of the modeling system can be found in the

open literature references cited in Table 6.

6. Conclusions

The major contribution of this research project has been the
development of a mathematical modeling system that can be used to
describe urban-scale photochemical air pollution. Based on the species
continuity equation each model incorporates the combined influences of
advective tramnsport, turbulent diffusion, chemical reactions,'source
emissions and surface removal processes. Satisfactory performance of
the modeling system has been demomstrated by comparing predicted and
observed air quality over the South Coast Air Basin for the two day
period 26-27 June‘1974. The model predictions of the spatial and
temporal variations of nitrogen dioxide (NOZ) and ozomne (03)'agree
quite closely with measured air quality. These results and other tests
indicate that the modeling system can now be used to evaluate air

quality impacts of alternative emission control strategies.



TABLE 6

Summary of Publications from Photochemical Modeling Project

TOPIC

REFERENCE

General

Model Development

Model Evaluation

Applications

Chemical Mechanism

Mechanism Development

Sensitivity Analysis

Water Vapor Concentratiom

Objective Analysis Procedures

Interpolation Techniques

Wind Field Generation

Turbulent Diffusion

K-Theory Model
Convective Mixing
Numerical Analysis

Solution of the Atmospheric
Diffusion Equation

McRae (1979, 1981)
Goodin et al. (1979a)
McRae et al., (1979, 1982ac)

McRae and Tilden (1980)
McRae and Seinfeld (1982)

.Seinfeld and McRae (1979)

McRae (1980a)

Falls and Seinfeld (1978)
McRae et al. (1982a)

Koda et al. (1979)
Falls et al. (1979)
Tilden et al. (1980)
McRae et al. (1982d)
McRae and Tilden (1980)

McRae (1980b)

Goodin et al. (1979b, 1981)

Goodin et al. (1979c)
Goodin and McRae (1980)

McRae et al, (1982a)

McRae et al, (1981)

McRae et al. (1982b)
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